Senin, 26 September 2011

konversi bilangan






Konversi dan Sistem Bilangan

I . Konversi dan Sistem Bilangan Desimal
Konversi Ke Sistem Bilangan Binari
Contoh :
Bilangan desimal 45 dikonversi ke bilangan binar
20 = 1
22 = 4
23 = 8
25 = 32
--+ --+
45= 101101
Konversi ke Bilangan Oktal
Untuk mengkonversi bilangan desimal ke bilangan oktal dapat digunakan remainder method dengan pembaginya adalah basis dari bilagan Oktal yaitu 8
Contoh
385 : 8 = 48 sisa 1
48 : 8 = 6 sisa 0
Konversi ke Bilangan Hexadesimal dengan menggunakan remainder metode dibagi dengan basis bilangan hexadesimal yaitu 16
Contoh
1583 : 16 = 98 sisa 15 = F
98 : 16 = 6 sisa 2

II. Konversi dari Sistem Bilangan Binari

Konversi ke sistem bilangan desimal dari bilangan binari dapat dikonversikan ke bilangan desimal dengan cara mengalikan masing-masing bit dalam bilangan dengan position value-nya.

Contoh :
1011012 = 1 x 25 + 0 x 24 + 1 x 20 + 1 x 22 + 0 x 21 + 1 x 20
= 32 + 0 + 8 + 4 + 0 + 1
= 4510

Konversi ke sistem bilangan oktal Konversi dari bilangan binary ke oktal dapat dilakukan dengan mengkonversi tiap tiga buat digit binari

Contoh :1101101 dapat dikonversi ke oktal dengan cara :
1 = 1 101 = 5 101 = 5

Konversi ke sistem bilangan hexadesimal Konversi dari bilangan binary ke hexadesimal dapat dilakukan dengan mengkonversi tiap empat buat digit binari

Contoh : 1101101 dapat dikonversi ke hexadecimal dengan
110 = 6 1101 = D

III. Konversi dari Sistem Bilangan Oktal

Konversi ke sistem bilangan desimal dari bilangan binari dapat dikonversikan ke bilangan desimal dengan cara mengalikan masing-masing bit dalam bilangan dengan position value-nya.

Contoh :
3248 = 3 x 82 + 2 x 81 + 4 x 80
= 3 x 64 + 2 x 8 + 4 x 1
= 192 + 16 + 4
= 212 10

Konversi dari bilangan Oktal ke Binari dapat dilakukan dengan mengkonversi masing-masing digit oktal ke 3 digit binari.

Contoh :
5 = 101 6 = 110 7=111 dapat dikonversi ke binari dengan cara :

Konversi dari bilangan oktal ke hexadesimal dapat dilakukan dengan cara merubah dari bilangan oktal menjadi bilangan binari terlebih dahulu, baru dikonversi ke bilangan hexadesimal

Contoh :
5 = 101 6 = 110 7 = 111 dikonversi terlebih dahulu ke binari
dari bilangan binar baru dikonversi ke hexadesimal
1 = 7 0111 = 7 0111 = 7

IV. Konversi dari Sistem Bilangan Heksadesimal

Konversi ke sistem bilangan desimal dari bilangan binari dapat dikonversikan ke bilangan desimal dengan cara mengalikan masing-masing bit dalam bilangan dengan position value-nya.

Contoh :
B6A16 = 11 x 162 + 6 x 161 + 10 x 160
= 11 x 256 + 6 x 16 + 10 x 1
= 2816 + 96 + 10
= 292210

Konversi dari bilangan hexadesimal ke Binari dapat dilakukan dengan mengkonversi masing-masing digit hexadesimal ke 4 digit binari.

Contoh :
D = 1101 6 = 0110

Konversi dari bilangan hexadesimal ke oktal dapat dilakukan dengan cara merubah ke bilangan binar terlebih dahulu baru dikonversi ke oktal.

Contoh :
D = 1101 6 = 0110
Kemudian dikonversi ke bilangan oktal
11 = 3 010 = 2 110 = 6

Akhirnya, materi Sistem Bilangan dan Konversi Bilangan Desimal , Biner, Oktal , dan Heksadesimal telah selesai.



2 komentar:

Arifo Informatika mengatakan...

ndak ada yang laen pilihannya...

nurul isnaini informatika mengatakan...

ada bnyak

Posting Komentar